


#### Features

- Direct Frequency Measurement to 1.3GHz (160MHz Model 1991)
- 1nSec Single Shot Time Interval
- 9-Digit Resolution in 1 second
- Automatic Triggering
- Full GPIB Control
- Phase Measurement
- Signal Peak Amplitude Measurement
- Math Capability
- Battery Operation

#### General Description

### **Outstanding Resolution**

Models 1991 and 1992 feature a remarkable 9-digit resolution in 1 second whatever the frequency. This is achieved by using a time error correction (TEC) high resolution counting technique, which extends the capability of recipromatic measurements by providing an effective clock frequency of 1GHz.

#### Introduction

The Racal-Dana universal counters, Models 1991 and 1992 offer a unique combination of superior performance and measurement capability in a compact, half-rack

test & me These dual microprocessor-based counters provide outstanding operational simplicity with exceptional versatility. The measurement functions, which include frequency, period, time interval, ratio, totalize, phase and peak amplitude benefit from full GPIB programming, external arming, an internal timing delay generator and math capability.

> For applications where speed is vital, the resolution may be varied between 3 and 9 digits to provide optimum speed/resolution performance. In addition, the ability to reduce resolution is a highly desirable feature when making measurements on noisy or unstable signals.

## email: m.sev@sglabs.it Universal Counters Models 1991 and 1992

Period A

6.25nS to 1.7 × 103 Sec Range 3 to 9 digits plus overflow. Digits Displayed

LSD Displayed (Sec)

 $P \times 10^{-D}$  (D = No. of digits, P = Period

rounded up to next decade)\*.

Resolution \*(Sec)

± LSD<sup>†</sup> ± (Trig. Error\* × Period)

/Gate Time.

Accuracy \* (Sec)

± Resolution ± (Timebase Error ×

Period).

Ratio A/B

Specified for higher frequency applied to Input A.

Range

DC to 100MHz on both inputs.

LSD Displayed (for 6-9 digits selected)

rounded to Freg. B × Gate Time nearest decade\*.

Resolution\*

± LSD ± (Trig. Error B \*/Gate Time)

× Ratio.

Accuracy\*

± Resolution.

Totalize A by B

Accumulative or single totalize

Input

Range

1018-1 (Max. 9 most significant digits

displayed).

Maximum Rate

108 events/Sec.

Minimum Pulse Width

5nS min. at trigger points.

Accuracy

±1 count.

Start/Stop

Electrical (Input B) or Manual.

Phase (A rel. to B)

Range

0.1° to 360°.

LSD Displayed

0.1° to 1MHz. 1.0° to 10MHz. 10° to 100MHz.

Resolution \* (degrees)

± LSD ± (TI Resolution/Period A)

× 360°

Accuracy \* (degrees)

± LSD ± (TI Accuracy/Period A)

Amplitude Measurement

Peak\*

Frequency Range Amplitude Range

50Hz to 20MHz. 160mV p-p to 51V p-p.

Resolution × 1 attenuation

20mV 200mV

× 10 attenuation Accuracy

× 1 attenuation

 $\pm 50 \text{mV} \pm 6\% \text{ V p-p.}$ 

(Typically ± 40mV ± 2% V p-p.)

× 10 attenuation

± 500mV ± 10% V p-p.

(Typically ± 400mV ± 3% V p-p.)

DC (<15mV p-p AC) Amplitude Range

±51V.

Resolution

× 1 attenuation × 10 attenuation 20mV 200mV

Accuracy

× 1 attenuation

± 40mV ± 1% Rdg.

× 10 attenuation

± 400mV ± 1% Rdg.

Math

Available on all measurements except Phase and Check.

Function

(Result - X)/Z.

**Entry Range** 

 $\pm 1 \times 10^{-10}$  to  $\pm 1 \times 10^{10}$ 

to 9 significant figures.

General

Internal Timebase

Crystal Controlled

Frequency

10MHz.

Aging

Adjustment

 $2 \times 10^{-6}$  in the first year.

Temperature Stability

 $\pm 1 \times 10^{-5}$  over the range 0 to  $+50^{\circ}$ C.

Via rear panel.

Frequency Standard Output

Frequency

10MHz.

Amplitude

TTL levels giving approx. 1V p-p

into 50 ohms. 90 ohms nominal.

Impedance Max. Reverse Input

± 15V.

External Standard

Input

Frequency

Impedance

10MHz (see also Option 10 for other

frequencies). Min. 100mV rms

Signal Amplitude (Sine Wave)

Max. 10V rms

1 kohm nominal at 1V p-p 500 ohms nominal at 10V p-p

Gate Time

(Frequency, Period and Ratio modes).

Automatically determined by resolution selected

(Range 1 msec - 10sec)\*

Gate Time Resolution Selected (seconds) 10 9 + overflow 0.1 8 0.01

Single Cycle (Hold)

Display

Enables a single measurement to be initiated and held.

0.001

6,5,4,3

9-digit, high brightness, 14mm LED display in engineering format with

exponent digit.

t 2LSD for 6-9 digits displayed.
\* See Definitions.

### **Technical Specification** Model 1991

#### Input Characteristics

#### Inputs A and B

Frequency Range

DC to 160MHz DC coupled Input A 10Hz to 160MHz AC coupled

Input B

DC to 100MHz DC coupled 10Hz to 100MHz AC coupled

Sensitivity

Sine Wave

25mVrms DC to 100MHz 50mVrms to 160MHz

Pulse

75mV p-p, 5nS min, width

Dynamic Range (× 1 attenuation) 75mV to 5V p-p to 50MHz 75mV to 2.5V p-p to 100MHz 150mV to 2.5V p-p to 160MHz

Signal Operating Range

× 1 attenuation ± 5.1V × 10 attenuation ± 51V

Input Impedance (nominal)

 $(\times 1 \text{ and } \times 10 \text{ atten.})$ 

Separate Mode 50ohms or 1 Megohm //≤45pf Common Mode 50ohms or 1 Megohm //≤55pf

Maximum Input (without damage)

50 ohms

5V(DC + ACrms)

1 Meaohm (× 1 attenuation) 260V(DC + ACrms), DC to 2kHz Decreasing to 5V rms, at 100kHz and

1 Megohm (× 10 attenuation) 260V(DC + ACrms), DC to 20kHz Decreasing to 50Vrms at 100kHz and

above.

Low Pass Filter

50kHz nominal (Input A selectable).

Trigger Slope

+ve or -ve

AC or DC.

Attenuator

Coupling

×1 or ×10. In Auto Trigger mode, attenuator selected automatically if

necessary.

Trigger Level Range

Manual

× 1 attenuation × 10 attenuation ± 5.1V in 20mV steps. ± 51V in 200mV steps.

Automatic

± 51V.

Trigger Level Accuracy

Manual and Automatic

× 1 attenuation × 10 attenuation ± 30mV ± 1% of trigger level reading. ± 300mV ± 1% of trigger level reading.

Auto Trigger

Frequency Range

DC and 50Hz to 100MHz (Typically 160MHz) Typically 150mV p-p\*

Min. Amplitude (AC) × 10 attenuator

Automatically selected if input signal exceeds  $\pm 5.1 \text{V}$  or 5.1 V p-p\*.

Trigger Level Outputs (Rear Panel)

Range

Accuracy (Relative to true trigger level)

× 1 attenuation × 10 attenuation Impedance

± 1% V output + 10mV ± 1% V output ± 100mV 10 kohm nominal

**External Arming** 

A comprehensive external arming capability to determine the START and/or STOP point of a measurement, Available on all measurement functions except phase.

± 5.1V

Input Signal (via Rear Panel) TTL compatible (min. pulse width

Slope

+ve or -ve independently selectable

on START or STOP arm.

Impedance

1kohm nominal

#### Measurement Modes

#### Frequency A

Range

DC to 160MHz.

Digits Displayed

3 to 9 digits plus overflow

LSD Displayed (Hz)

 $F \times 10^{-D}$  (D = No. of digits, F = Freq.

rounded up to next decade)\*

Resolution \*(Hz)

± LSD† ± (Trig. Error\* × Freq.)

/Gate Time.

Accuracy \*(Hz)

± Resolution ± (Timebase Error ×

Frequency)

#### Time Interval

Range

Separate Mode

0 to 8 × 105 sec.

Typically -2nS to +8 ×105 Sec.

Common Mode 5nS to 8 × 105 Sec.

Input

Common Separate Input A START and STOP

Input A START Input B STOP

**Trigger Slopes** 

+ve or -ve Selectable START and

STOP.

LSD Displayed

1nS min.

Resolution \*(Sec)

± LSD ± 1nS ± Trig Error\*

Accuracy \*(Sec)

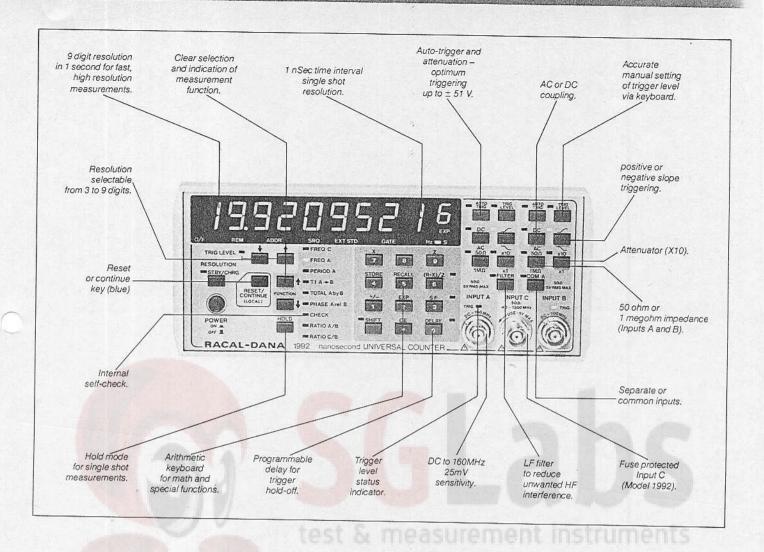
 $\pm$  Resolution  $\pm$  (Timebase Error  $\times$  TI). ± Trigger Level Timing Error\* ± 2nS\*\*

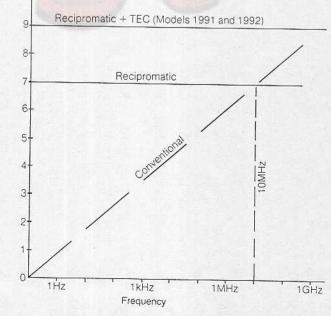
### Time Delay

Available on Time Interval and Totalize.

Range

200 µS to 800 mS nominal.


Step Size


25 µS nominal.

Accuracy

 $\pm 0.1\% \text{ Rdg.} \pm 50 \mu \text{S}$ 

<sup>\*\*</sup> A differential delay which may be reduced by numerical offset or external compensation † 2LSD for 6-9 digits displayed. See Definitions.





No. of Digits Displayed in 1 second Measurement Time

A comparison of different counting techniques shows the exceptional resolution achieved at all frequencies by the combined TEC and recipromatic techniques used in models 1991 and 1992. This outstanding resolution also applies to timing measurements which is not the case using other techniques.


### One Nanosecond Single Shot Time Interval

The TEC technique enables Models 1991 and 1992 to make single shot time interval measurements to an exacting one nanosecond resolution. High accuracy measurements may be made on single pulses as narrow as five nanoseconds while genuine zero nanosecond time intervals are made possible by the superb input conditioning circuits. Propagation delays in as little as one meter of cable may be measured using this feature. For single pulse systems, including radar, sonar and satellite communications, these instruments are the only realistic choice in the price range.

#### **Auto Trigger**

Fast, fully automatic trigger control guarantees optimum triggering for the vast majority of measurement applications. The attenuator is selected automatically when required allowing any input waveform to be handled over the instrument's full operating range of -51V to +51V.

Manual control of trigger level is provided by direct entry of the desired trigger voltage or by 'UP' and 'DOWN' slew controls. The display may be programmed from the front panel to show the trigger voltage or, in auto-trigger mode, the mean, positive peak or negative peak of the input signal. This provides a peak reading capability up to a full 20MHz.



Automatic triggering guarantees optimum triggering for the majority of applications. Models 1991 and 1992 may be used to display the maximum, minimum and trigger levels of the input signal. The trigger level is set to the mid point between the maximum and minimum voltages.

#### Full GPIB Control (IEEE-STD-488 (1978))

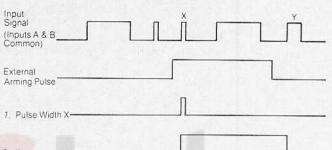
For use in rack-and-stack or full ATE configurations a highly versatile GPIB option is available making all front panel function and signal conditioning controls fully programmable. The exceptionally user-friendly interface follows the guidelines and conventions recommended in IEEE-STD-728 (1982) and IEC 625-2.

These remarkable counters provide more measurement power than any other low cost counter and more capability than many sophisticated, expensive systems instruments.

#### Math Capability

The 1991 and 1992 have the capability to offset and scale measurements to provide a readout in whatever units are most convenient to the user. Examples include milesper-hour, feet-per-second, litres-per-second, gallons-per-hour, r.p.m., percent, parts-per-million or any exponent format, thereby allowing results to be interpreted quickly and easily – no conversions, no calculations.

Offset and scaling when used in conjunction with the exceptionally high resolution and read rate are particularly useful when adjusting crystal controlled frequency standards.


#### **Special Functions**

The front panel keypad provides access to a range of special functions which further extend and enhance the superb measurement capability and versatility. These functions include Frequency B, Period B, single shot auto trigger and an increased read rate — all vital in an ATE role. Other important features offered by the special function capability are the self check and diagnostic routines which

enable the operator to verify correct functioning and provide rapid fault identification.

#### **External Arming**

Comprehensive external arming ensures total measurement control. With the START and STOP selectively inhibited by the application of an external arming signal, individual pulses or bursts may be extracted from a complex waveform for special attention. By synchronizing the measurement process in this way radar or pulse code modulated signals may be fully characterized. External arming may also be combined with the internal timing generator 'STOP DELAY' function to further increase the ability to characterize complex waveforms.



- 2. Time Interval X to Y
- External Arm (+ve edge) with Internal Stop.
   External Arm enable (+ve edge) with External Arm disable (-ve edge).

The nine arming modes available in Models 1991 and 1992 enable complex waveforms to be fully characterized. Individual pulses with pulsewidths down to 5nS can be extracted and measured as can the time interval between two pulses. In waveforms which include tone bursts, the frequency of bursts may be measured quickly and easily.

#### Choice of Frequency Standards

A wide range of frequency standards is available to provide Models 1991 and 1992 with the perfect standard for any application. Crystal controlled, temperature controlled crystal oscillators (TCXO) and proportionally controlled oven timebase standards are available for bench, system, battery portable or precision measurement applications. A standby mode ensures that power is supplied continuously to the timebase to maintain maximum stability.

For maximum accuracy and to ensure synchronization to a master standard, a 10MHz external standard input is included. An internally fitted frequency standard multiplier option is available for use with external standards operating at submultiples of 10MHz ensuring complete systems compatibility.

#### DC Supply Operation

For field applications an internal rechargeable battery option provides a 'go-anywhere' capability. A battery economizer feature maximizes battery life by shutting down to the standby mode when the instrument is not in continuous use.

An external DC input of 11-16V is also provided with the battery option allowing the counters to be powered from a vehicle or other external DC supply.

Power Requirements

Voltage 90-110

103-127 193-237 207-253 VAC

Frequency 45-450Hz Rating 35VA Max. Operating 0° to + 50°C

Temperature Range (0° to + 40°C with battery pack). Storage Temperature -40°C to +70°C (-40°C to +60°C

Range with battery pack).

Environmental Designed to meet MIL-T-28800 and

DEF-STD 66/31

Safety Designed to meet the requirements of

IEC348 and follow the guidelines of

UL1244

RFI/EMC MIL-STD-461B

Weight Net 3.63kg (8lb.) excl. battery 6.8kg (15lb.) incl. battery Shipping 5.5kg (11lb.) excl. battery

8.75kg (19.3lb.) incl. battery

Model 1992

Specification identical to that for Model 1991 with the addition of the following:-

Input Characteristics

Input C

Frequency Range 40MHz to 1.3GHz.

Sensitivity

Sine Wave <10mV rms, 40MHz to 1GHz <75mV rms to 1.3GHz.

Dynamic Range 10mV rms to 5V rms to 1GHz.

75mV rms to 5V rms to 1.3GHz. Input Impedance

50 ohms nominal AC coupled. **VSWR** ≤ 2:1 at 1 GHz.

Maximum Input 7V rms (fuse protected).

Fuse located in BNC connector.

Damage Level 25W

Measurement Modes

Frequency C

Range 40MHz to 1.3GHz. ISD As for Frequency A\*.

Resolution\* and

Accuracy\* As for Frequency A.

Ratio C/B

Specified for higher frequency applied to Input C. Range Input C 40MHz to 1.3GHz.

Input B DC to 100MHz.

LSD Displayed

640 Freq. B × Gate Time /, rounded to (for 6-9 digits selected)

nearest decade\*

Resolution\* and

Accuracy\* As for Ratio A/B. Options

Option 01 Rear Panel Inputs

A rear panel input, factory fitted option, is available for ATE applications. Inputs A and B are in parallel with those on the front panel while input C (Model 1992 only) is fitted in place of the front panel input.

Option 04T

Temperature Controlled Crystal Oscillator

Frequency 10MHz.

 $3 \times 10^{-7}$ /month. Aging Rate  $1 \times 10^{-6}$  in the first year. Temperature Stability  $\pm 1 \times 10^{-6}$  over the range

0 to +40°C (operable to +50°C).

Adjustment Via rear panel.

Option 04A

Ovened Oscillator

Temperature Stability

Frequency 10MHz

3 × 10<sup>-9</sup>/day averaged over 10 days Aging Rate

after 3 months continuous operation.  $\pm 3 \times 10^{-9}$ °C averaged over range

0° to +45°C (operable to +50°C). Warm Up Typically  $\pm 1 \times 10^{-7}$  within 6 minutes.

Adjustment Via rear panel.

Option 04B

High Stability Ovened Oscillator

Frequency 10MHz

5 × 10<sup>-10</sup>/day averaged over 10 days Aging Rate

after 3 months continuous operation.  $\pm$  6  $\times$  10<sup>-19</sup>/°C averaged over range

Temperature Stability 0° to + 50°C

Warm Up  $\pm 1 \times 10^{-7}$  within 20 minutes.

Adjustment Via rear panel.

Option 07

Rechargeable Battery Pack and External DC Operation

Battery Type Battery Life Sealed lead-acid cells Typ. 4.75 hours at +25°C

(1992-4.25 hrs). (14 hrs on standby). Display indicates battery low.

**Battery Condition** External DC 11-16V via socket on rear panel (-ve ground, not isolated).

Option 10

Reference Frequency Multiplier

Input Frequency 1, 2, 5 or 10MHz ( $\pm 1 \times 10^{-5}$ ). Input Amplitude

As for external standard input. and Impedance

Option 55

**GPIB** Interface Designed to comply with IEEE-STD-488

(1978) and to conform with the guidelines of IEEE-STD-728 (1982).

Control Capability All functions and controls

programmable except power on/off

and standby charge.

Output Engineering format (11 digits and

exponent).

<sup>\*</sup> See Definitions

IEEE-STD-488 Subsets SH1, AH1, T5, TE0, L4, LE0, SR1, RL1,

PP0, DC1, DT1, C0, E2.

Handshake Time

250µS to 1mS/character dependent

on message content.

Read Rate

Typically 20/sec dependent upon

measurement function.

#### Definitions

LSD (Least Significant Digit).

In Frequency and Period modes display automatically upranges at 1.1 × decade and downranges at 1.05 × decade, except on Input C for input frequency > 1GHz.

Accuracy and Resolution Expressed as an RMS value.

Trigger Error RMS.

Trigger Error = 
$$\sqrt{\frac{(e_{1}^{2} + e_{n1}^{2})}{S1^{2}}} + \frac{(e_{12}^{2} + e_{n2}^{2})}{S2^{2}}$$

where  $e_i$  = input amplifier RMS noise (typically 150 $\mu$ V RMS in 160MHz bandwidth).

en = input signal RMS noise in 160MHz bandwidth.

S = Slew rate at trigger point V/Sec.

Suffix 1 denotes START edge

Suffix 2 denotes STOP edge

In Frequency A, Period A, Frequency B and Period B modes triggering is always on positive going edge.

Trigger Level Timing Error

Trigger Level Timing Error (Seconds) = 0.035 
$$\left(\frac{1}{S1} - \frac{1}{S2}\right)$$

typically = 0.018 
$$\left(\frac{1}{S1} - \frac{1}{S2}\right)$$

S1 = Slew rate on START edge V/Sec.

S2 = Slew rate on STOP edge V/Sec.

The nominal gate time indicated is set by the resolution selected in Frequency Period Ratio and Check modes. It is the value which is used in the calculation of LSD and Resolution. The true gate time will be extended from this value by up to:

- (a) One period of the input signal(s) on Frequency B, Period B and Ratio A/B.
- (b) Two periods of the input signal on Frequency A and Period A.
- (c) One period of input signal B on Ratio C/B.

#### Peak and Peak-to-Peak Amplitudes

Peak is defined as being the highest or lowest point at which the signal width is 5nS. Similarly, Peak-to-Peak is the difference between the highest and lowest points at which the signal width is 5nS.

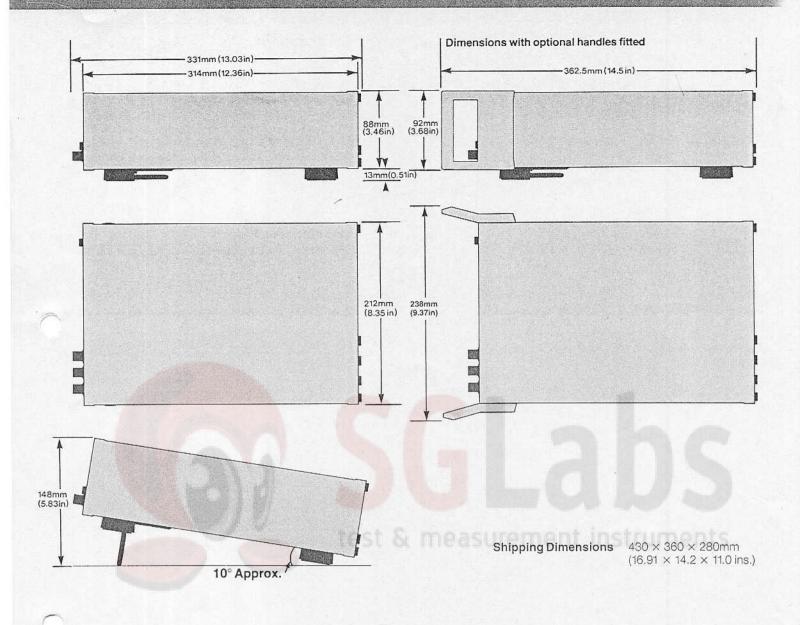
#### **Supplied Accessories**

Power Cord Spare Fuse Operator's Manual

Spare 1.3GHz Fuse (Model 1992 only).

#### Ordering Information

| 1991 | 160MHz Universal Counter  |  |
|------|---------------------------|--|
| 1992 | 1300MHz Universal Counter |  |


#### **Options and Accessories**

| 01*             | Rear Panel Inputs                        | 11-1709 (N   | /lodel 1991         |  |
|-----------------|------------------------------------------|--------------|---------------------|--|
| 01*             | Rear Panel Inputs                        | 11-1732 (N   | 1-1732 (Model 1992) |  |
| 04T**           | TCXO                                     |              | 11-1713             |  |
| 04A**           | Oven Oscillator                          |              | 11-1710             |  |
| 04B**           | High Stability Oven Oscillator           |              | 11-1711             |  |
| 07 <sup>†</sup> | Battery Pack                             |              | 11-1625             |  |
| 10              | Reference Frequency Multiplier           |              | 11-1645             |  |
| 55 <sup>†</sup> | GPIB Interface                           |              | 11-1626             |  |
| 60              | Handles                                  |              | 11-1730             |  |
| 60A             | Rack Mounting Kit (Fixed, Single)        |              | 11-1648             |  |
| 60B             | Rack Mounting Kit (Fixed, Double)        |              | 11-1649             |  |
| 61              | Carrying Case                            |              | 15-0773             |  |
| 61M             | Protectomuff Case                        |              | 15-0736             |  |
| 65              | Chassis Slides (incl. F                  | Rack Mounts) | 11-1716             |  |
| PAS             | Telescopic Antenna                       | strume       | 23-9020             |  |
|                 | High Impedance Probe (100MHz 1MΩ)23-9104 |              |                     |  |
| Topic .         | 1.3GHz Fuse (Pkt. 5)                     |              | 11-1718             |  |

<sup>\*</sup> Fitting Option 01 may affect certain specification parameters.

<sup>\* \*</sup> Only one frequency standard may be fitted at any one time. The standard reference will be supplied unless option 04T, 04A or 04B is specified.

<sup>†</sup>The battery pack and GPIB options cannot both be fitted.



## RACAL-DANA

Racal-Dana Instruments Inc. 4 Goodyear Street, P.O. Box C-19541, Irvine, CA 92718, USA, Telephone: (714) 859-8999. TWX; 910-595-1136. Telex: 678-341.

Racal-Dana Instruments Ltd. Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England. Telephone: (0703) 843265. TLX: 47600. Fax: (0703) 848919.

Racal-Dana Instruments S.A. 18 Avenue Dutarire, 78150 Le Chesnay, France. Telephone: (3) 955 88 88. TLX: 697215.

Racal-Dana Instruments GmbH. Hermannstrasse 29, D-6078 Neu Isenburg, Federal Republic of Germany. Telephone: (06102 2861/2. TLX: 412896.

Racal-Dana Instruments Italia SRL. Via Mecenate 84/A, 20138 Milano MI, Italy. Telephone: (02) 5062767/5062686/503444. Telex: 315697.

The RACAL policy is one of continuous development and consequently the equipment may vary in detail from the description and specification in this publication.

DOGDE